Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(41): 15057-15070, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812395

RESUMO

Although microstructure optimization is an effective strategy to improve and regulate electromagnetic wave (EMW) absorption properties, preparing microwave absorbents with enhanced EMW absorbing performance and tuned absorption band by a simple method remains challenging. Herein, ZnIn2S4/reduced graphene oxide (rGO) composites with flower-like and cloud-like morphologies were fabricated by a convenient hydrothermal method. The ZnIn2S4/rGO composites with different morphologies realize efficient EMW absorption and tunable absorption bands, covering a wide frequency range. The flower-like structure has an optimal reflection loss (RL) of up to -49.2 dB with a maximum effective absorption bandwidth (EAB) of 5.7 GHz, and its main absorption peaks are concentrated in the C and Ku bands. The minimal RL of the cloud-like structure can reach -36.3 dB, and the absorption peak shifts to the junction of X and Ku bands. The distinguished EMW absorption capacity originates from the uniquely optimized microstructure, complementary effect of ZnIn2S4 and rGO in dielectric constant, and synergy of various loss mechanisms, such as interfacial polarization, dipole polarization, conductive loss, and multiple reflections. This study proposes a guide for the structural optimization of an ideal EMW absorber to achieve efficient and tunable EMW absorption performance.

2.
J Colloid Interface Sci ; 648: 117-128, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295363

RESUMO

All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.

3.
Dalton Trans ; 52(10): 3085-3096, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36786669

RESUMO

In the practical application of microwave absorbing materials, traditional powder materials need to be mixed with the matrix to fabricate composite coatings. However, the complex preparation process of composite coatings and the uneven dispersion of powders in the matrix limit their application. To solve these problems, two-dimensional (2D) F-WS2/CP composite films were prepared by using carbon paper (CP) as a dispersion matrix and loading flower-like WS2 on its surface through a simple hydrothermal method. The morphology and microwave absorption (MA) performance of the composite films are easily regulated by adjusting the amount of reaction precursors. The combination of WS2 and CP facilitates impedance matching and improves the electromagnetic wave attenuation performance based on the synergistic effect of different loss mechanisms including multiple reflections and scattering, interfacial polarization, dipolar polarization, and conduction loss. At a low filler content (5 wt%), the maximum reflection loss (RL) of the composite film is up to -50 dB (99.999% energy absorption) at 12.5 GHz with 2.8 mm thickness. Moreover, at a relatively thin 1.8 mm thickness, its maximum RL remains -35 dB (>99.9% energy absorption). The as-prepared composite film shows excellent MA properties at a thinner thickness and lower filling content, providing inspiration for the preparation of light weight and efficient 2D thin-film microwave absorbers in the future.

4.
Langmuir ; 38(48): 14733-14744, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36412147

RESUMO

Although intensive efforts have been devoted to fabricating Ti3C2Tx MXene composites for microwave absorption, it remains a great challenge to achieve excellent MA performance at low loading and thin thickness. Herein, a three-dimensional (3D) lightweight hierarchically structured MnO2/Ti3C2Tx/RGO composite aerogel with abundant heterointerfaces was fabricated via a hydrothermal and chemical reduction self-assembly method. The RGO aerogel embedded with laminated MnO2/Ti3C2Tx provides a lot of heterogeneous interfaces, 3D porous interconnected conductive networks, and reasonable combination of various loss materials for rich interfacial polarization, conductivity loss, multiple reflections and scattering, and good impedance matching. Benefiting from the synergy of different loss mechanisms, the maximum reflection loss (RL) is up to -66.5 dB (>99.9999% energy absorption) at only 10 wt % loading and 2.0 mm thickness, and even at only 1.5 mm thickness, the maximum RL value remains at -36 dB (>99.9% energy absorption). The work provides a promising route to construct 3D hierarchically heterogeneous composite aerogels for efficient MA at thin thickness and low loading.

5.
Langmuir ; 38(3): 945-956, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35019654

RESUMO

Carbon fiber aerogel (CFA) derived from cotton wool as a potential microwave absorbing material has received intensive attention owing to the low density, high conductivity, large surface area, and low cost, but its applications are limited by the relatively high complex permittivity. To solve this problem, TiO2@C (derived from Ti3C2Tx) is introduced into CFA to prepare lightweight TiO2@C/CFA composites based on electromagnetic (EM) parameter optimization and enhanced EM wave attenuation performance. The microwave absorption capacity of TiO2@C/CFA-2 composite is obviously better than that of CFA. It is confirmed that good impedance matching derived from the combination of TiO2@C and CFA is the main factor to achieve excellent microwave absorption. Moreover, the improved microwave absorption capabilities are closely related to multiple EM wave absorbing mechanisms including multiple reflections and scattering, dipolar and interfacial polarization, and conductivity loss. TiO2@C/CFA-2 possesses a maximum reflection loss (RL) of -43.18 dB at a low response frequency of 6.0 GHz. As the matching thickness is less than 2.0 mm, the maximum RL values can still exceed -20 dB, and at the same time, the wide effective absorption bandwidth (EAB) below -10 dB achieves 4.36 GHz at only 1.9 mm thickness. Our work confirms that the lightweight and high-performance TiO2@C/CFA composites are promising choices and offer a new approach to design and construct carbon-based microwave absorbents derived from biomass.

6.
ACS Appl Mater Interfaces ; 11(23): 21049-21057, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31094500

RESUMO

Hydrogel-based wearable sensors have experienced an explosive development, whereas functional integration to mimic the multisignal responsiveness of skin especially for pressure and temperature remained a challenge. Herein, a functional ionic hydrogel-base flexible sensor was successfully prepared by integrating the thermal-sensitive N-isopropylacrylamide (NIPAAm) into another conductive double-network hydrogel based on polyvinyl alcohol-graphene oxide (PVA-GO) and polyacrylic acid-Fe3+ (PAA-Fe3+). Because of the multisynergistic network design, the triple-network hydrogel was endowed with excellent conductivity (∼170 Ω/mm), mechanical tolerance (1.1 MPa), and rapid recoverability (within 0.5 s), which demonstrated the potential use in pressure monitoring. Moreover, the introduction of a thermal-sensitive network allowed it to capture the changes in the human body temperature accurately simultaneously and to be further developed as a flexible temperature sensor. In particular, the unsynchronization of pressure and temperature strain (straining to stability within 0.5 s and more than 50 s, respectively) caused the two electrical signals to be automatically separated. Intuitive reading of data without involving complex parameter separation calculations allowed the hydrogel to be developed as an integrated dual temperature-pressure-sensitive flexible sensor. In addition, all above properties demonstrated that the as-prepared functional hydrogel could be extended to the practical application in human-machine interactions and personalized multisignal monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...